Membrane topology of the vaccinia virus A17L envelope protein.

نویسندگان

  • T Betakova
  • E J Wolffe
  • B Moss
چکیده

The formation of a lipoprotein membrane within specialized areas of the cytoplasm is the first visible step in poxvirus morphogenesis. The A17L viral protein, an essential nonglycosylated membrane component, was predicted to have four centrally located alpha-helical membrane-spanning domains. The gene was expressed as a 23-kDa protein in a cell-free transcription/translation system containing canine pancreatic microsomes. The N- and C-terminal ends of the membrane-associated protein were susceptible to proteinase digestion, whereas the central region was resistant, consistent with a model in which the first and fourth hydrophobic domains are membrane spanning. This topology was supported by the sizes of the major proteinase-resistant membrane-associated products of genes containing one or more deleted hydrophobic domains and by evidence that the C-terminus was intraluminal and glycosylated on deletion of the second, third, and fourth domains, the third and fourth domains, or just the fourth domain. Moreover, glycosylation also occurred when an N-glycosylation site was introduced into the second hydrophobic domain of the full-length A17L protein. The data indicated a predominant topology in which the N- and C-termini are cytoplasmic, the first and fourth hydrophobic domains span the microsomal membrane, and the second and third hydrophobic domains are intraluminal. This arrangement has important implications for interactions of the A17L protein with other membrane components.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vaccinia virus penetration requires cholesterol and results in specific viral envelope proteins associated with lipid rafts.

Vaccinia virus infects a wide variety of mammalian cells from different hosts, but the mechanism of virus entry is not clearly defined. The mature intracellular vaccinia virus contains several envelope proteins mediating virion adsorption to cell surface glycosaminoglycans; however, it is not known how the bound virions initiate virion penetration into cells. For this study, we investigated the...

متن کامل

Characterization of early stages in vaccinia virus membrane biogenesis: implications of the 21-kilodalton protein and a newly identified 15-kilodalton envelope protein.

Vaccinia virus (VV) membrane biogenesis is a poorly understood process. It has been proposed that cellular membranes derived from the endoplasmic reticulum-Golgi intermediate compartment (ERGIC) are incorporated in the early stages of virion assembly. We have recently shown that the VV 21-kDa (A17L gene) envelope protein is essential for the formation of viral membranes. In the present work, we...

متن کامل

Identification of functional domains in the 14-kilodalton envelope protein (A27L) of vaccinia virus.

The mechanism of entry of vaccinia virus (VV) into cells is still a poorly understood process. A 14-kDa protein (encoded by the A27L gene) in the envelope of intracellular mature virus (IMV) has been implicated in virus-cell attachment, virus-cell fusion, and virus release from cells. We have previously described the structural organization of the VV 14-kDa protein, consisting of a triple-stran...

متن کامل

The vaccinia virus 14-kilodalton (A27L) fusion protein forms a triple coiled-coil structure and interacts with the 21-kilodalton (A17L) virus membrane protein through a C-terminal alpha-helix.

The vaccinia virus 14-kDa protein (encoded by the A27L gene) plays an important role in the biology of the virus, acting in virus-to-cell and cell-to-cell fusions. The protein is located on the surface of the intracellular mature virus form and is essential for both the release of extracellular enveloped virus from the cells and virus spread. Sequence analysis predicts the existence of four reg...

متن کامل

Dengue virus type-3 envelope protein domain III; expression and immunogenicity

Objective(s): Production of a recombinant and immunogenic antigen using dengue virus type-3 envelope protein is a key point in dengue vaccine development and diagnostic researches. The goals of this study were providing a recombinant protein from dengue virus type-3 envelope protein and evaluation of its immunogenicity in mice. Materials and Methods: Multiple amino acid sequences of different i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Virology

دوره 261 2  شماره 

صفحات  -

تاریخ انتشار 1999